Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
2.
Clin Hemorheol Microcirc ; 82(2): 149-155, 2022.
Article in English | MEDLINE | ID: covidwho-2280785

ABSTRACT

BACKGROUND: Elevated estimated blood viscosity (EBV), derived from hematocrit and globulins, is associated with thrombotic complications, organ failure, and higher mortality in COVID-19 patients. Although informative, EBV does not account for cellular interactions or fibrinogen. OBJECTIVE: Investigate whether patients with acute and recent COVID-19 have altered whole blood viscosity (WBV) when measured at both high and low shear rates using in vitro blood samples from patients. METHODS: Cross-sectional study of 58 patients: 15 in the intensive care unit with acute COVID-19, 32 convalescent (9 < 8weeks [W] from acute infection, 23 > 8 W), and 11 controls without COVID-19. WBV was measured at high (300 s-1) and low (5 s-1) shear rates (HSR, LSR) using a scanning capillary viscometer.RESULTSAcute and convalescent patients < 8 W had mean WBV at LSR (16.0 centipoise [cP] and 15.1 cP) and HSR (5.1 cP and 4.7 cP). Mean WBV of convalescent > 8 W and control patients were 12.3 cP and 13.0 cP at LSR, and 4.1 cP and 4.2 cP at HSR. Acute and < 8 W patients had significantly higher WBV at both HSR and LSR compared to patients > 8 W (all p≤0.01). No significant differences in WBV were observed between acute and < 8 W patients, or between patients > 8 W and controls. CONCLUSIONS: Hyperviscosity provides a possible explanation for thrombotic risk in acute and convalescent (< 8 W) patients. These findings have important implications for thromboprophylaxis.


Subject(s)
COVID-19 , Thrombophilia , Thrombosis , Venous Thromboembolism , Humans , Cross-Sectional Studies , Anticoagulants , Venous Thromboembolism/complications , Blood Viscosity , Thrombosis/etiology
3.
Curr Opin Hematol ; 29(6): 290-296, 2022 11 01.
Article in English | MEDLINE | ID: covidwho-2273378

ABSTRACT

PURPOSE OF REVIEW: Hyperviscosity syndromes can lead to significant morbidity and mortality. Existing methods to measure microcirculatory rheology are not readily available and limited in relevance and accuracy at this level. In this review, we review selected hyperviscosity syndromes and the advancement of their knowledge using microfluidic platforms. RECENT FINDINGS: Viscosity changes drastically at the microvascular level as the physical properties of the cells themselves become the major determinants of resistance to blood flow. Current, outdated viscosity measurements only quantify whole blood or serum. Changes in blood composition, cell number, or the physical properties themselves lead to increased blood viscosity. Given the significant morbidity and mortality from hyperviscosity syndromes, new biophysical tools are needed and being developed to study microvascular biophysical and hemodynamic conditions at this microvascular level to help predict those at risk and guide therapeutic treatment. SUMMARY: The use of 'lab-on-a-chip' technology continues to rise to relevance with point of care, personalized testing and medicine as customizable microfluidic platforms enable independent control of many in vivo factors and are a powerful tool to study microcirculatory hemorheology.


Subject(s)
Hematologic Diseases , Physicians , Blood Viscosity/physiology , Hematologic Diseases/diagnosis , Hematologic Diseases/therapy , Hemorheology , Humans , Lab-On-A-Chip Devices , Microcirculation
4.
Biophys J ; 121(18): 3309-3319, 2022 09 20.
Article in English | MEDLINE | ID: covidwho-2003901

ABSTRACT

Microthrombi and circulating cell clusters are common microscopic findings in patients with coronavirus disease 2019 (COVID-19) at different stages in the disease course, implying that they may function as the primary drivers in disease progression. Inspired by a recent flow imaging cytometry study of the blood samples from patients with COVID-19, we perform computational simulations to investigate the dynamics of different types of circulating cell clusters, namely white blood cell (WBC) clusters, platelet clusters, and red blood cell clusters, over a range of shear flows and quantify their impact on the viscosity of the blood. Our simulation results indicate that the increased level of fibrinogen in patients with COVID-19 can promote the formation of red blood cell clusters at relatively low shear rates, thereby elevating the blood viscosity, a mechanism that also leads to an increase in viscosity in other blood diseases, such as sickle cell disease and type 2 diabetes mellitus. We further discover that the presence of WBC clusters could also aggravate the abnormalities of local blood rheology. In particular, the extent of elevation of the local blood viscosity is enlarged as the size of the WBC clusters grows. On the other hand, the impact of platelet clusters on the local rheology is found to be negligible, which is likely due to the smaller size of the platelets. The difference in the impact of WBC and platelet clusters on local hemorheology provides a compelling explanation for the clinical finding that the number of WBC clusters is significantly correlated with thrombotic events in COVID-19 whereas platelet clusters are not. Overall, our study demonstrates that our computational models based on dissipative particle dynamics can serve as a powerful tool to conduct quantitative investigation of the mechanism causing the pathological alterations of hemorheology and explore their connections to the clinical manifestations in COVID-19.


Subject(s)
COVID-19 , Blood Viscosity , COVID-19/blood , Fibrinogen/metabolism , Hemorheology , Humans
5.
J Am Coll Cardiol ; 80(4): 316-328, 2022 07 26.
Article in English | MEDLINE | ID: covidwho-1930910

ABSTRACT

BACKGROUND: Coronavirus disease-2019 (COVID-19) is characterized by a dysfunctional immune response and abnormal blood rheology that contribute to endothelial dysfunction and thrombotic complications. Whole blood viscosity (WBV) is a clinically validated measure of blood rheology and an established predictor of cardiovascular risk. We hypothesize that increased WBV is associated with mortality among patients hospitalized with COVID-19. OBJECTIVES: This study sought to determine the association between estimated BV (eBV) and mortality among hospitalized COVID-19 patients. METHODS: The study population included 5,621 hospitalized COVID-19 patients at the Mount Sinai Health System from February 27, 2020, to November 27, 2021. eBV was calculated using the Walburn-Schneck model. Multivariate Cox proportional hazards models were used to evaluate the association between eBV and mortality. Considered covariates included age, sex, race, cardiovascular and metabolic comorbidities, in-house pharmacotherapy, and baseline inflammatory biomarkers. RESULTS: Estimated high-shear BV (eHSBV) and estimated low-shear BV were associated with increased in-hospital mortality. One-centipoise increases in eHSBV and estimated low-shear BV were associated with a 36.0% and 7.0% increase in death, respectively (P < 0.001). Compared with participants in the lowest quartile of eHSBV, those in the highest quartile of eHSBV had higher mortality (adjusted HR: 1.53; 95% CI: 1.27-1.84). The association was consistent among multiple subgroups, notably among patients without any comorbidities (adjusted HR: 1.69; 95% CI: 1.28-2.22). CONCLUSIONS: Among hospitalized COVID-19 patients, increased eBV is significantly associated with higher mortality. This suggests that eBV can prognosticate patient outcomes in earlier stages of COVID-19, and that future therapeutics aimed at reducing WBV should be evaluated.


Subject(s)
COVID-19 , Blood Viscosity/physiology , Comorbidity , Hospital Mortality , Hospitalization , Humans , Retrospective Studies , Risk Factors
6.
Acta Otorrinolaringol Esp (Engl Ed) ; 73(2): 104-112, 2022.
Article in English | MEDLINE | ID: covidwho-1706496

ABSTRACT

BACKGROUND: Changes in blood viscoelastic properties have been proposed previosuly as etiopathogenesis for severe complications in COVID-19 and some cases of Sudden Deafness (SD). This is an attempt to verify if SD cases in patients admitted for SARS-Cov-2 infection can be correlated. PATIENTS AND METHODS: A prospective follow-up was carried out with COVID-19 patients, monitoring their blood viscosity (BV) at high shear rate (300 s-1) and inquiring them periodically for eventual hearing loss. This measurement was extended to cases bearing of SD in 2019 and 2020 without infection and a control group of healthy normoacoustic subjects. RESULTS: The normality range was 4,16 ± 0,62 cps. 330 cases admitted for COVID-19 were evaluated from February 24th, 2020 to March 24th, 2021, 85 of them attended in ICU. After anamnesis and Audiometric Tone Thresholds developed as soon as possible, 9 SD were detected, all belonging to ICU group. The mean BV was 4,38 ± 0,43 cps in the ward group, 4,53 ± 0,39 cps in the ICU patients without SD, and 4,85 ± 0,52 cps in the cases with SD, with statistically significant differences. Highest BV elevations in the SD cases were detected between days 6 and 10 of hospital admission. In 2019 four cases consulted with SD, and another two did it in 2020 without a diagnosis of COVID-19, with normal BV values. CONCLUSIONS: During SARS-Cov-2 infection, patients may show high BV and SS, although an inpatients control group and a larger sample volume are necessary to confirm the predisposition to hyperviscosity. The incidence of hearing damage is considerable if its possible appearance is taken into account, within the limitations of critical patients with COVID-19.


Subject(s)
COVID-19 , Hearing Loss, Sudden , Blood Viscosity , COVID-19/complications , Hearing Loss, Sudden/diagnosis , Hearing Loss, Sudden/etiology , Humans , Prospective Studies , SARS-CoV-2
7.
Am J Hematol ; 97(3): 283-292, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1589260

ABSTRACT

The aim of this study was to (1) analyze blood viscosity, red blood cell (RBC) deformability, and aggregation in hospitalized patients with Coronavirus disease 19 (COVID-19); (2) test the associations between impaired blood rheology and blood coagulation; and (3) test the associations between impaired blood rheology and several indicators of clinical severity. A total of 172 patients with COVID-19, hospitalized in COVID-unit of the Internal Medicine Department (Lyon, France) participated in this study between January and May 2021. Clinical parameters were collected for each patient. Routine hematological/biochemical parameters, blood viscosity, RBC deformability and aggregation, and RBC senescence markers were measured on the first day of hospitalization. A control group of 38 healthy individuals was constituted to compare the blood rheological and RBC profile. Rotational thromboelastography was performed in 76 patients to study clot formation dynamics. Our study demonstrated that patients with COVID-19 had increased blood viscosity despite lower hematocrit than healthy individuals, as well as increased RBC aggregation. In-vitro experiments demonstrated a strong contribution of plasma fibrinogen in this RBC hyper-aggregation. RBC aggregation correlated positively with clot firmness, negatively with clot formation time, and positively with the length of hospitalization. Patients with oxygen supplementation had higher RBC aggregation and blood viscosity than those without, and patients with pulmonary lesions had higher RBC aggregation and enhanced coagulation than those without. This study is the first to demonstrate blood hyper-viscosity and RBC hyper-aggregation in a large cohort of patients with COVID-19 and describe associations with enhanced coagulation and clinical outcomes.


Subject(s)
Blood Viscosity , COVID-19/blood , Erythrocyte Aggregation , Erythrocytes/pathology , Adult , Aged , Blood Coagulation , COVID-19/diagnosis , COVID-19/pathology , Erythrocyte Deformability , Humans , Middle Aged , SARS-CoV-2/isolation & purification
12.
Clin Hemorheol Microcirc ; 78(1): 41-47, 2021.
Article in English | MEDLINE | ID: covidwho-1058391

ABSTRACT

Low plasma estrogens, vitamin D deficiency, obesity, diabetes, cardiovascular diseases, thromboembolism, and impaired microcirculation are linked to the severity of covid-19. Studies have suggested that these comorbidities also are related to erythrocyte factors linked to increased blood viscosity in microcirculation such as erythrocyte aggregation and erythrocyte deformability. Increased blood viscosity in microcirculation can lead to a decrease in oxygenation and nutrition of tissues. Therefore erythrocyte aggregation and erythrocyte deformability may be involved in covid-19 severity, leading to tissue hypoxia and a decrease of drug concentration in affected organs. If this relationship is demonstrated, erythrocytes factors can be used to monitor treatments for improve microcirculatory fluidity that may decrease covid-19 severity. Lifestyle improvement and treatments such as vitamin D and estrogens supplementation are some possible approaches to improve microcirculation and covid-19 prevention and treatment.


Subject(s)
COVID-19/blood , Erythrocytes/physiology , Microcirculation/physiology , Blood Viscosity , COVID-19/physiopathology , COVID-19/therapy , Erythrocyte Aggregation , Erythrocyte Deformability , Erythrocytes/pathology , Humans , SARS-CoV-2/isolation & purification
13.
Rev Neurosci ; 32(3): 341-349, 2021 04 27.
Article in English | MEDLINE | ID: covidwho-1021723

ABSTRACT

Coronavirus disease 2019 (COVID-19), due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in Wuhan city, China in December 2019 and rapidly spread to other countries. The most common reported symptoms are fever, dry cough, myalgia and fatigue, headache, anorexia, and breathlessness. Anosmia and dysgeusia as well as gastrointestinal symptoms including nausea and diarrhea are other notable symptoms. This virus also can exhibit neurotropic properties and may also cause neurological diseases, including epileptic seizures, cerebrovascular accident, Guillian barre syndrome, acute transverse myelitis, and acute encephalitis. In this study, we discuss stroke as a complication of the new coronavirus and its possible mechanisms of damage.


Subject(s)
COVID-19/physiopathology , Endothelium, Vascular/physiopathology , Hypoxia/physiopathology , Stroke/physiopathology , Thrombophilia/physiopathology , Angiotensin-Converting Enzyme 2/metabolism , Blood Viscosity , COVID-19/blood , COVID-19/complications , COVID-19/metabolism , Humans , Hypoxia/complications , Myocarditis/complications , Myocarditis/physiopathology , Renin-Angiotensin System , Risk , SARS-CoV-2/metabolism , Stroke/blood , Stroke/etiology , Stroke/metabolism , Thrombophilia/blood , Thrombophilia/etiology
15.
Transfusion ; 61(4): 1029-1034, 2021 04.
Article in English | MEDLINE | ID: covidwho-969728

ABSTRACT

BACKGROUND: Recent data suggests an association between blood hyperviscosity and both propensity for thrombosis and disease severity in patients with COVID-19. This raises the possibility that increased viscosity may contribute to endothelial damage and multiorgan failure in COVID-19, and that therapeutic plasma exchange (TPE) to decrease viscosity may improve patient outcomes. Here we sought to share our experience using TPE in the first 6 patients treated for COVID-19-associated hyperviscosity. STUDY DESIGN AND METHODS: Six critically ill COVID-19 patients with plasma viscosity levels ranging from 2.6 to 4.2 centipoise (cP; normal range, 1.4-1.8 cP) underwent daily TPE for 2-3 treatments. RESULTS: TPE decreased plasma viscosity in all six patients (Pre-TPE median 3.75 cP, range 2.6-4.2 cP; Post-TPE median 1.6 cP, range 1.5-1.9 cP). TPE also decreased fibrinogen levels in all five patients for whom results were available (Pre-TPE median 739 mg/dL, range 601-1188 mg/dL; Post-TPE median 359 mg/dL, range 235-461 mg/dL); D-dimer levels in all six patients (Pre-TPE median 5921 ng/mL, range 1134-60 000 ng/mL; Post-TPE median 4893 ng/mL, range 620-7518 ng/mL); and CRP levels in five of six patients (Pre-TPE median 292 mg/L, range 136-329 mg/L; Post-TPE median 84 mg/L, range 31-211 mg/L). While the two sickest patients died, significant improvement in clinical status was observed in four of six patients shortly after TPE. CONCLUSIONS: This series demonstrates the utility of TPE to rapidly correct increased blood viscosity in patients with COVID-19-associated hyperviscosity. Large randomized trials are needed to determine whether TPE may improve clinical outcomes for patients with COVID-19.


Subject(s)
Blood Viscosity , COVID-19 , Plasma Exchange , SARS-CoV-2/metabolism , Adult , Aged , COVID-19/blood , COVID-19/therapy , Humans , Male , Middle Aged
16.
Shock ; 55(4): 465-471, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-744653

ABSTRACT

ABSTRACT: Patients with severe coronavirus disease-2019 (COVID-19) frequently have hypercoagulability caused by the immune response to the severe acute respiratory syndrome coronavirus-2 infection. The pathophysiology of COVID-19 associated hypercoagulability is not fully understood, but characteristic changes include: increased fibrinogen concentration, increased Factor VIII activity, increased circulating von Willebrand factor, and exhausted fibrinolysis. Anticoagulant therapy improves outcomes in mechanically ventilated patients with COVID-19 and viscoelastic coagulation testing offers an opportunity to tailor anticoagulant therapy based on an individual patient's coagulation status. In this narrative review, we summarize clinical manifestations of COVID-19, mechanisms, monitoring considerations, and anticoagulant therapy. We also review unique considerations for COVID-19 patients who are on extracorporeal membrane oxygenation.


Subject(s)
COVID-19/diagnosis , COVID-19/therapy , Thrombophilia/diagnosis , Thrombophilia/therapy , Anticoagulants/therapeutic use , Blood Coagulation Tests , Blood Viscosity/physiology , COVID-19/blood , Combined Modality Therapy , Correlation of Data , Endothelium, Vascular/physiopathology , Extracorporeal Membrane Oxygenation , Factor VIII/physiology , Fibrinogen/physiology , Fibrinolysis/drug effects , Fibrinolysis/physiology , Humans , Monitoring, Physiologic , Respiration, Artificial , Thrombelastography , Thrombophilia/blood
17.
Clin Rheumatol ; 39(9): 2529-2543, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-640445

ABSTRACT

The pathogenesis of Coronavirus disease 2019 (COVID-19) is gradually being comprehended. A high number of thrombotic episodes are reported, along with the mortality benefits of heparin. COVID-19 can be viewed as a prothrombotic disease. We overviewed the available evidence to explore this possibility. We identified various histopathology reports and clinical case series reporting thromboses in COVID-19. Also, multiple coagulation markers support this. COVID-19 can be regarded as a risk factor for thrombosis. Applying the principles of Virchow's triad, we described abnormalities in the vascular endothelium, altered blood flow, and platelet function abnormalities that lead to venous and arterial thromboses in COVID-19. Endothelial dysfunction, activation of the renin-angiotensin-aldosterone system (RAAS) with the release of procoagulant plasminogen activator inhibitor (PAI-1), and hyperimmune response with activated platelets seem to be significant contributors to thrombogenesis in COVID-19. Stratifying risk of COVID-19 thromboses should be based on age, presence of comorbidities, D-dimer, CT scoring, and various blood cell ratios. Isolated heparin therapy may not be sufficient to combat thrombosis in this disease. There is an urgent need to explore newer avenues like activated protein C, PAI-1 antagonists, and tissue plasminogen activators (tPA). These should be augmented with therapies targeting RAAS, antiplatelet drugs, repurposed antiinflammatory, and antirheumatic drugs. Key Points • Venous and arterial thromboses in COVID-19 can be viewed through the prism of Virchow's triad. • Endothelial dysfunction, platelet activation, hyperviscosity, and blood flow abnormalities due to hypoxia, immune reactions, and hypercoagulability lead to thrombogenesis in COVID-19. • There is an urgent need to stratify COVID-19 patients at risk for thrombosis using age, comorbidities, D-dimer, and CT scoring. • Patients with COVID-19 at high risk for thrombosis should be put on high dose heparin therapy.


Subject(s)
Coronavirus Infections/blood , Endothelium, Vascular/metabolism , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/blood , Thrombophilia/blood , Thrombosis/blood , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme 2 , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Anticoagulants/therapeutic use , Betacoronavirus/metabolism , Blood Platelets , Blood Viscosity , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Coronavirus Infections/metabolism , Endothelium, Vascular/physiopathology , Fibrin Fibrinogen Degradation Products , Fibrinogen/metabolism , Fibrinolytic Agents/therapeutic use , Heparin/therapeutic use , Humans , Pandemics , Plasminogen Activator Inhibitor 1/blood , Platelet Activation , Platelet Aggregation Inhibitors/therapeutic use , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , Pneumonia, Viral/metabolism , SARS-CoV-2 , Severity of Illness Index , Thrombophilia/etiology , Thrombophilia/metabolism , Thrombosis/drug therapy , Thrombosis/etiology , Tissue Plasminogen Activator/blood , Tissue Plasminogen Activator/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL